

Learning from Hallucinations: Mitigating Hallucinations in LLMs via Internal Representation Intervention

○Sora Kadotani, Kosuke Nishida, Kyosuke Nishida (NTT, Inc.)

Outline

- **Problem**
 - Hallucination mitigation methods with non-factual LLMs (anti-expert) are effective
 - However, they require high computational costs because the two LLMs are run
- **Proposal**
 - Our in-model anti-expert (IMAE) mitigates hallucinations with a single LLM
 - We change the internal representations in the direction of improving factuality
- **Results**
 - IMAE was less costly than the conventional anti-expert and outperformed baselines

Existing Method: Anti-expert [Zhang+, 25] (1/2)

- Fine-tuning using factual answers make LLMs to hallucinate [Yang+, 24]
- They created an anti-expert LLM using hallucinated answers
- They obtained the output distributions of a factual LLM (expert) by **contrasting the output distribution** of the base and anti-expert LLM



Existing Method: Anti-expert [Zhang+, 25] (2/2)

- 😊 Anti-expert has achieved state-of-the-art performance
- 😢 Anti-expert requires high computational costs
 - 2.2x more GPU memory usage
 - 1.9x higher latency

We tackle this problem

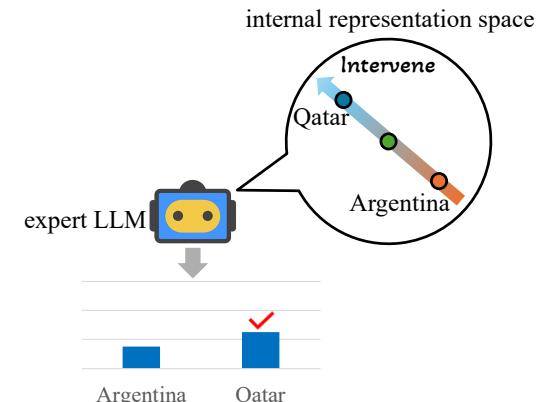
Proposed Method: In-model Anti-expert

- We alleviate the increase in memory usage and latency by integrating the anti-expert LLM into the base LLM
- We shift the internal representation of the base LLM in the direction of improving factuality

Anti-expert

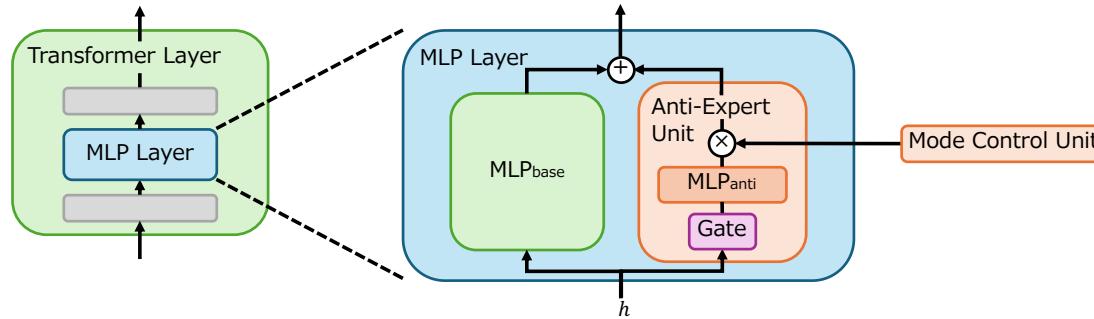


In-model anti-expert (ours)



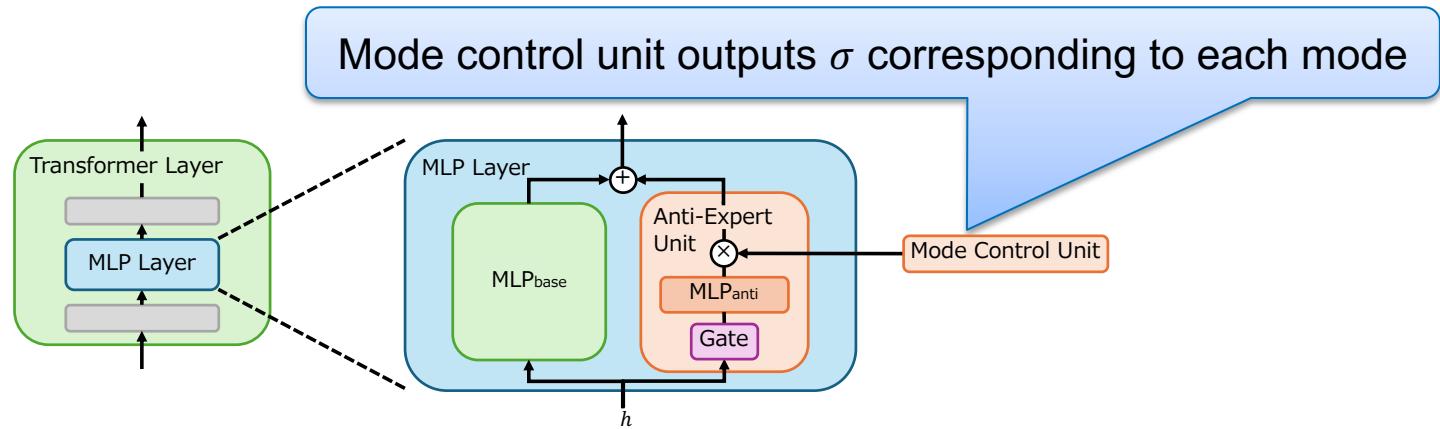
Model Architecture (1/2)

- Our architecture is based on parallel adapter [He+, 22]
- We add an anti-expert unit to each MLP layer of the base LLM and a mode control unit



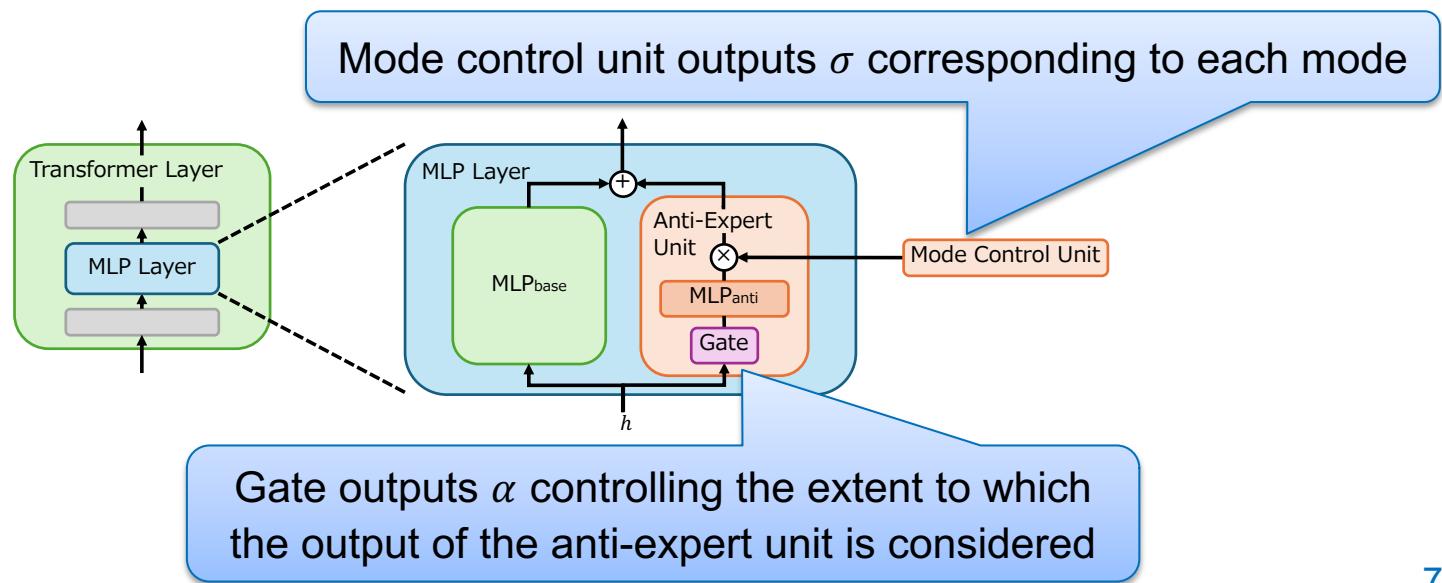
Model Architecture (1/2)

- Our architecture is based on parallel adapter [He+, 22]
- We add an anti-expert unit to each MLP layer of the base LLM and a mode control unit



Model Architecture (1/2)

- Our architecture is based on parallel adapter [He+, 22]
- We add an anti-expert unit to each MLP layer of the base LLM and a mode control unit

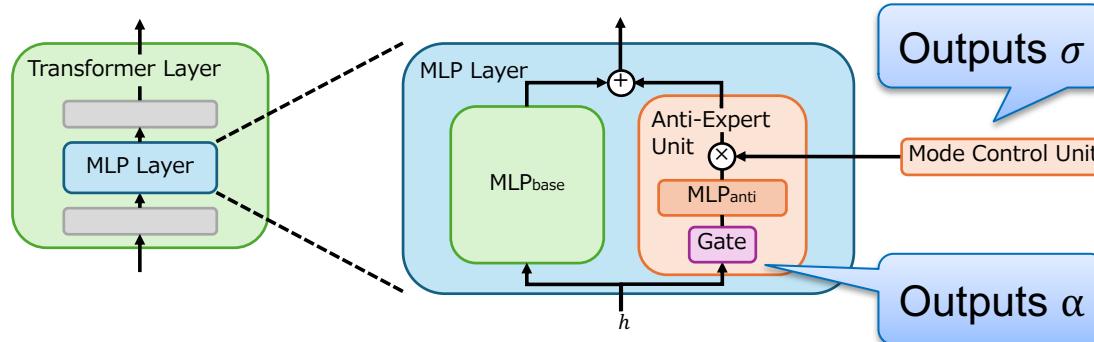


Model Architecture (2/2)

- In-model anti-expert operates in three modes:
 - Anti-expert mode: $\sigma = 1$ for generating non-factual text
 - Base mode: $\sigma = 0$ for replicating the base LLM output
 - Expert mode: $\sigma = -1$ for generating factual text
- Computation of the output of the MLP layer:

$$\alpha = \text{softmax}(Wh + b)_0$$

$$\text{MLP}(h) = \text{MLP}_{\text{base}}(h) + \sigma \cdot \text{MLP}_{\text{anti}}(\alpha h)$$



Loss Function

- We use a dataset in which each sample consists of a question and its hallucinated answer
- We apply multi-task learning
 - Anti-expert mode: cross entropy
 - Expert mode: Kullback-Leibler divergence

$$L_{\text{expert}} = \sum_i D_{\text{KL}} \left(p_{\text{expert}}(x_i) \parallel p_{\text{target}}(x_i) \right)$$

Loss Function

- We use a dataset in which each sample consists of a question and its hallucinated answer
- We apply multi-task learning
 - Anti-expert mode: cross entropy
 - Expert mode: Kullback-Leibler divergence

$$L_{\text{expert}} = \sum_i D_{\text{KL}}(p_{\text{expert}}(x_i) || p_{\text{target}}(x_i))$$

Output probability of the expert mode

Loss Function

- We use a dataset in which each sample consists of a question and its hallucinated answer
- We apply **multi-task learning**
 - Anti-expert mode: cross entropy
 - Expert mode: Kullback-Leibler divergence

$$L_{\text{expert}} = \sum_i D_{\text{KL}}(p_{\text{expert}}(x_i) || p_{\text{target}}(x_i))$$

Output probability of the expert mode

Factual probability calculated by contrasting the output distributions of the base and anti-expert mode

Evaluation

- **Settings**
 - Train/test data: Halueval, TruthfulQA
 - Base LLM: Llama2-7B-Chat
 - Evaluation metrics: MC1, GPU memory usage (GB), latency (ms/token)

Evaluation

- **Settings**
 - Train/test data: Halueval, TruthfulQA
 - Base LLM: Llama2-7B-Chat
 - Evaluation metrics: MC1, GPU memory usage (GB), latency (ms/token)
- **Results**
 - IMAE outperformed the existing methods in MC1, except for the conventional anti-expert
 - IMAE improved GPU memory usage 2.2x to 1.4x and latency from 1.9x to 1.2x

	MC1 ↑	memory ↓	latency ↓
Base	36.96	13.2 (1.0x)	2.09 (1.0x)
Anti-expert [Zhang+, 23]	46.32	28.6 (2.2x)	4.05 (1.9x)
ITI [Li+, 23]	37.01	16.2 (1.2x)	2.09 (1.0x)
Dola [Chuang+, 23]	32.97	15.1 (1.2x)	2.21 (1.1x)
CD [Li+, 23]	28.15	41.0 (3.1x)	6.42 (3.1x)
IMAE (ours)	40.02	18.4 (1.4x)	2.60 (1.2x)