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• RQ︓LLMは⾃⾝のhallucinationを検知できるか︖

• hallucination検知をある⽂の真偽判定タスクとして定式化し, 
LLMのhallucination検知性能を測るフレームワークで検証
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本研究の⽬的

真実の⽂の⽣成

虚偽の⽂の⽣成

⽣成⽂の真偽判定

Paul Mounsey is a musician from Scotland.

Paul Mounsey is a musician from Ireland.

yes or no

真実の⽂ or虚偽の⽂



• LLMのパラメータに内包されている知識を引き出すために
Chain-of-Thought (CoT) [1] を⽤いる真偽判定⼿法を提案

• 実験の結果, GPT3.5-Turboは⾃⾝のhallucinationを58.2%検知
できることを確認

• 詳細な分析により, hallucination検知率はLLMのパラメータに
内包されている知識量に関係することが判明
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本研究の貢献

[1] https://arxiv.org/abs/2201.11903

https://arxiv.org/abs/2201.11903


• 背景
• 検証フレームワーク (FW)
• 実験
• 分析
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⽬次



• LLMが嘘をつき事実に基づかない応答をする現象
• アプリケーションの信頼性を低下させるため, 開発者は検知
して防ぐ必要がある

• 本研究の⽬的はhallucination検知
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背景︓hallucination

川崎市

ビジャレアル



• 内部状態を⽤いる⼿法 [2]
– トークン予測確率からLLMの確信度を推定
– トークン予測確率が低い部分にはhallucinationが含まれている可能性
が⾼いと仮定することで検知

– LLM単体で適⽤可能
– 内部状態にアクセスできないLLMには使えない

• 外部知識を⽤いる⼿法 [3]
– ファクトチェックの分野で活発に研究されてきた
– データベースやウェブから根拠となる⽂書を取得し, ⽣成テキストに
⽭盾する内容がないか確認することで検知

– 内部状態にアクセスできないLLMにも使える
– 外部モジュールが必要で, 各アプリケーションに適した検索システム
を構築することはコストが⾼く困難
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背景︓既存のhallucination検知⼿法

[2] https://arxiv.org/abs/2302.09664
[3] https://aclanthology.org/2022.tacl-1.11/

https://arxiv.org/abs/2302.09664
https://aclanthology.org/2022.tacl-1.11/
https://aclanthology.org/2022.tacl-1.11/
https://aclanthology.org/2022.tacl-1.11/


• LLMが⾃⾝で⽣成したhallucinationを検知することは困難だ
と考えられる

• LLMをhallucination検知器として⽤いることができれば
– 内部状態にアクセスできないLLMにも適⽤可能
– 外部モジュールが不要で, すべてのユーザが⼿軽に使える
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背景︓リサーチクエスチョン (RQ)



• LLMが⾃⾝で⽣成したhallucinationを検知することは困難だ
と考えられる

• LLMをhallucination検知器として⽤いることができれば
– 内部状態にアクセスできないLLMにも適⽤可能
– 外部モジュールが不要で, すべてのユーザが⼿軽に使える

• RQ︓LLMは⾃⾝のhallucinationを検知できるか︖
– LLMのhallucination検知性能を測るフレームワークによって検証
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背景︓リサーチクエスチョン (RQ)

⽣成テキスト

⽣成

検知



• LLMのhallucination検知性能を測るフレームワーク

• ⽂中の知識が (subject, relation, object) の三組み (トリプル) 
で表される⽂から構成されるデータセットを使⽤
– トリプルの例︓(Paul Mounsey, place of birth, Scotland)

• hallucination検知をある⽂の真偽判定タスクとして定式化し, 
⽣成⽂の真偽判定精度を測定

• 検証ステップ (詳細は後述)
1. 真実の⽂の⽣成
2. 虚偽の⽂の⽣成
3. ⽣成⽂の真偽判定
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検証FW︓概要



• データセット内の各⽂の⾔い換え⽂を⽣成
• objectフレーズを使うように指⽰
• GPT-3.5 Turboを⽤いた実験では,  ⼈⼿評価で99%が指⽰通り
に⽣成されたことを確認
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検証FW︓1. 真実の⽂の⽣成

⼊⼒

Generate a paraphrase of the input. You must use the keyword:

Input: NahooToo is the second album by Scottish musician Paul Mounsey.
Keyword: Scotland
Paraphrase: 

(Paul Mounsey, place of birth, Scotland)



• データセット内の各⽂の⾔い換え⽂を⽣成
• objectフレーズを使うように指⽰
• GPT-3.5 Turboを⽤いた実験では,  ⼈⼿評価で99%が指⽰通り
に⽣成されたことを確認

11

検証FW︓1. 真実の⽂の⽣成

出⼒

⼊⼒

Paul Mounsey released NahooToo as his second album as a musician from Scotland

Generate a paraphrase of the input. You must use the keyword:

Input: NahooToo is the second album by Scottish musician Paul Mounsey.
Keyword: Scotland
Paraphrase: 

(Paul Mounsey, place of birth, Scotland)

(Paul Mounsey, place of birth, Scotland)



• ステップ1で⽣成した真実の⽂のobjectフレーズを書き換え
て虚偽の⽂を⽣成

• ⼀⾒すると本当に⾒える嘘の⽂を⽣成するように指⽰
• GPT-3.5 Turboを⽤いた実験では,  ⼈⼿評価で99%が指⽰通り
に⽣成されたことを確認
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⼊⼒

Generate a false sentence that seems true. You must rewrite only the one keyword in the input:

Input: Paul Mounsey released NahooToo as his second album as a musician from Scotland.
Keyword: Scotland
False sentence: 

検証FW︓2. 虚偽の⽂の⽣成

(Paul Mounsey, place of birth, Scotland)



• ステップ1で⽣成した真実の⽂のobjectフレーズを書き換え
て虚偽の⽂を⽣成

• ⼀⾒すると本当に⾒える嘘の⽂を⽣成するように指⽰
• GPT-3.5 Turboを⽤いた実験では,  ⼈⼿評価で99%が指⽰通り
に⽣成されたことを確認
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⼊⼒

出⼒

Paul Mounsey released NahooToo as his second album as a musician from Ireland.

Generate a false sentence that seems true. You must rewrite only the one keyword in the input:

Input: Paul Mounsey released NahooToo as his second album as a musician from Scotland.
Keyword: Scotland
False sentence: 

(Paul Mounsey, place of birth, Ireland)

検証FW︓2. 虚偽の⽂の⽣成

(Paul Mounsey, place of birth, Scotland)



• ステップ1, 2で⽣成した⽂の真偽を判定
• 回答は ”yes / no“ で⽣成
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検証FW︓3. ⽣成⽂の真偽判定

⼊⼒ (真実の⽂)

⼊⼒ (虚偽の⽂)

出⼒

Does the input contain misinformation? You must answer with yes or no:

Input: Paul Mounsey released NahooToo as his second album as a musician from Ireland.
Answer: 

Does the input contain misinformation? You must answer with yes or no:
Input: Paul Mounsey released NahooToo as his second album as a musician from Scotland.
Answer: 

yes / no



15

検証FW︓CoTを⽤いた真偽判定
• LLMの知識はパラメータに埋め込まれており [4] , 真偽判定
にはパラメータに内包されている知識の活⽤が重要

• パラメータから知識を上⼿く引き出すためにCoTを⽤いる

出⼒

⼊⼒

1. "Paul Mounsey released NahooToo as his second album": This part of the sentence is 
accurate. "NahooToo" is indeed the second album released by Paul Mounsey.
2. "as a musician from Ireland": This part of the sentence contains misinformation. Paul 
Mounsey is not from Ireland; he is a Scottish musician and composer.
So, the sentence contains misinformation in the second part where it incorrectly identifies Paul 
Mounsey as being from Ireland.
Answer: yes

[4] https://arxiv.org/abs/2202.03629

Does the input contain misinformation? Let's think step by step to answer this question. You 
must answer with yes or no:

Input: Paul Mounsey released NahooToo as his second album as a musician from Ireland.
Thought: 

⽂を意味のまとまりごとに分割し,
根拠となる事実を⽣成して判定

https://arxiv.org/abs/2202.03629


• データセット︓LAMAデータセット [5]
– トリプルの情報が付与された英⽂で構成
– NLTKで代名詞を含む⽂をフィルタリング
– 41種類のrelationラベルがあり, 前処理後のテストデータは26,803⽂

• モデル︓GPT-3.5 Turbo (2023/11/06 版)
– 10-shotで⽣成

• 評価指標︓recall, precision, F値, 正解率
– hallucinationを⾒逃す偽陰性は偽陽性よりも深刻な誤りであるため, 

recallが最も重要な評価指標
– recallはhallucination検知率とも呼ぶ
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実験︓設定

[5] https://aclanthology.org/D19-1250/

https://aclanthology.org/D19-1250/
https://aclanthology.org/D19-1250/
https://aclanthology.org/D19-1250/


• CoTを⽤いない⼿法はrecallが21.9%しかなく, hallucination
検知器として使うことは難しい

• CoTによってパラメータに内包されている知識を引き出す
ことで, recallが36.3%, F値が33.8%, 正解率が14.5%向上

• precisionが若⼲低下した原因は, 事実や表現が曖昧な部分も
誤情報として検知するようになったからだと考えられる
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実験︓結果

recall (%) precision (%) F値 (%) 正解率 (%)
GPT-3.5 Turbo 21.9 85.1 34.9 58.0
GPT-3.5 Turbo (with CoT) 58.2 83.8 68.7 73.5



• 得意 / 不得意な分野が存在することが判明
– 地理や企業に関する分野は80%以上検知できる
– ⼈物やエンタメに関する分野は40%も検知できない

• LLMのパラメータに内包されている知識量が関係している︖
→ hallucination検知率と知識量の関係を分析
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分析︓relationラベルごとの検知率
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• 背景
– LLMの知識量は事前学習コーパスに関連するテキストがどれだけ
含まれているかに依存 [6]

– あるエンティティに関連するテキスト量とpopularityには相関がある
と考えられる [7] 

– hallucination検知率とpopularityの関係を分析

• 設定
– テストデータをビンに振り分け, ビン内のhallucination検知率と
平均popularityのSpearmanの順位相関係数を求める

– 振り分け⽅
• popularityに従って20個のビン
• relationラベルに従って41個のビン
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分析︓検知率と知識量の関係 (1/2)

[6] https://aclanthology.org/2022.findings-emnlp.59/
[7] https://aclanthology.org/2023.acl-long.546/

該当するWikipediaページの閲覧数と定義

https://aclanthology.org/2022.findings-emnlp.59/
https://aclanthology.org/2022.findings-emnlp.59/
https://aclanthology.org/2022.findings-emnlp.59/
https://aclanthology.org/2023.acl-long.546/
https://aclanthology.org/2023.acl-long.546/
https://aclanthology.org/2023.acl-long.546/


• 結果
– いずれの振り分け⽅でも正の相関あり
– popularityに従って振り分けた際の相関係数は0.574で, 有意に⾼い

• 結論
– LLMのhallucination検知率は知識量に関係しており, パラメータに
⼗分な知識が内包されていれば検知できる可能性が⾼い

– relationラベルごとのhallucination検知の難易度はpopularityから
ある程度説明できる
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分析︓検知率と知識量の関係 (2/2)

振り分け⽅ 相関係数 P値
popularity 0.574 0.008
relationラベル 0.337 0.031



• RQ︓LLMは⾃⾝のhallucinationを検知できるか︖
– ある⽂の真偽判定タスクとして定式化し, LLMのhallucination検知性能
を測るフレームワークによって検証

– パラメータに⼗分な知識が内包されていれば, CoTにより知識を
引き出すことで, 検知できる可能性が⾼い

• 本研究の貢献
– LLMが⾃⾝のhallucinationを検知できることを初めて定量的に⽰した
– LLMのhallucinationの改善に向けて, 各LLMがどのような分野で

hallucinationを起こしやすいかを評価する研究の⾜掛かり
– hallucination検知とLLMの知識量に関連があることを発⾒し, 
事前学習コーパスの量の重要性を改めて⽰した

21

まとめ


